منابع مشابه
Stability of a functional equation for square root spirals
Keywords---Hyers-Ulam-Rassias stability, Functional equation, Riemann zeta function, Square root spital. 1. I N T R O D U C T I O N The staxting point of studying the stability of functional equations seems to be the famous talk of Ulam [2] in 1940, in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms. Let G1...
متن کاملOn Hilbert Golab-Schinzel type functional equation
Let $X$ be a vector space over a field $K$ of real or complex numbers. We will prove the superstability of the following Go{l}c{a}b-Schinzel type equation$$f(x+g(x)y)=f(x)f(y), x,yin X,$$where $f,g:Xrightarrow K$ are unknown functions (satisfying some assumptions). Then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitr...
متن کاملOn a nonlinear integrable difference equation on the square
We present a nonlinear partial difference equation defined on a square which is obtained by combining the Miura transformations between the Volterra and the modified Volterra differential-difference equations. This equation is not symmetric with respect to the exchange of the two discrete variables. Its integrability is proved by constructing its Lax pair. The uncovery of new nonlinear integrab...
متن کاملRemarks on a functional equation∗
A functional equation involving pairs of means is considered. It is shown that there are only constant solutions if continuous differentiability is assumed, and there may be non-constant everywhere differentiable solutions. Various other situations are considered, where less smoothness is assumed on the unknown function.
متن کاملOn a functional equation for symmetric linear operators on $C^{*}$ algebras
Let $A$ be a $C^{*}$ algebra, $T: Arightarrow A$ be a linear map which satisfies the functional equation $T(x)T(y)=T^{2}(xy),;;T(x^{*})=T(x)^{*} $. We prove that under each of the following conditions, $T$ must be the trivial map $T(x)=lambda x$ for some $lambda in mathbb{R}$: i) $A$ is a simple $C^{*}$-algebra. ii) $A$ is unital with trivial center and has a faithful trace such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1974
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1974.50.449